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First Order of Business

Knowing When You Should 
Do Something Research-y 

to Answer a Question



#1: What am I trying to say? 

❖ Who am I trying to say something about? 
! Answer leads to how to appropriately select or collect data and to 

whom your findings can (or more importantly, cannot) be generalized. 
❖ What are my research questions? 

! Well-defined research questions guide selection of study design & 
statistical methods. 

❖ Am I trying to describe a behavior or make an inference to future 
behavior? 
! 99% of IR is descriptive in nature, & we typically only engage in inference 

when asked by others. This may lead to bad choices in design, data 
collection & analysis.



#2: How well do I know my data?

❖ Do I have the correct data available? If not, is it available? If it is, 
how will I collect it? 

❖ Am I collecting data from a sample that will allow me to make an 
inference about a population? Is it representative of the group I’m 
trying to say something about? If not, why not? (NOTE: IR collects & 
reports so much data mandated by the State & Feds that we often 
thinks is good enough to answer questions that were never intended 
to be answered with the data.) 

❖ Are there questions I can’t answer with the data I have? 



After Taking All of This Into 
Consideration…

You should go further & do something 
research-y (conduct a study) if & only if 

you have a  

GREAT IDEA!!!



Steps in Doing Something Research-y 
(At Each Step: Ask Friends for Advice)

❖ Conduct a literature review. 
❖ Write out your research question(s). 
❖ Identify your variables (independent (predictor), dependent 

(response), confounding (extraneous)). 
❖ Identify how your variables are scaled/measured (discrete or 

continuous; nominal, ordinal, interval or ratio scale). 
❖ Determine the type of study you need to conduct (observational/ 

causal/correlational or experimental).  
❖ Determine the statistical procedures needed for the study design 

(e.g., hypothesis test, regression analysis).



❖ Identify your data source(s).  
✓ Are you studying a sample or a population? 

✓ Is your data readily available from an existing database? 

✓ Will you need to design an instrument (e.g. survey, test) to collect the 
data? Is the instrument reliable? Are the inferences made with the 
instrument valid? 

✓ Will you need to use a random sampling method (simple random, 
systematic, stratified, cluster) for data collection?  

✓ If collecting or using data on human subjects, have you consulted the 
Institutional Review Board (IRB) concerning policies & procedures at your 
institution? 

❖ Collect your data. 
✓ Have the data been collected by random sampling/assignment? 

❖ Clean your data.



❖ Decide on the best analytical tool (statistical software) for your 
needs (number-crunching).  

❖ Format your data for use by the analytical tool.  
❖ Verify that your data meet the assumptions of the statistical 

procedure used (e.g., normality, independence). 
❖ Number-crunch with the analytical tool.  
❖ Interpret the output from the analytical tool. Make your inferences. 
❖ Summarize your findings. 
❖ Share your findings!



Basic Statistics: Part I

Statistical Vocabulary 

(or buzzwords people use a lot but 
probably don’t understand much)



Where Does Data REALLY Come From?

❖ At the simplest level, data comes from subjects or objects. Data is 
collected from subjects or objects. Data is NEVER a subject or an 
object. 

❖ When conducting statistical analysis, data comes from two groups: 
▪ Population: the “large” or “total” group under consideration 

• A number associated with a population is a parameter. 
▪ Sample: a subset of the population 

• A number associated with a sample is a statistic. 

❖ Most inferential statistical procedures assume that samples are 
selected randomly from populations. In a random sample, each 
subject has the same chance of being chosen & all relevant 
characteristics of the population are retained in the sample.



Types of Random Samples

❖ Simple Random Sample  
❖ Stratified Random Sample 

▪ Population is separated into two or more groups (strata) & samples are 
randomly selected from each strata. 

❖ Cluster Random Sample 
▪ Population is separated into two or more groups, some of the groups are 

randomly selected & ALL subjects in the groups are considered. 

❖ Systematic Random Sample 
▪ Every kth subject in the population is randomly selected.



Instruments for Data Collection from 
Populations & Samples

❖ Major data collection instruments in IR are:  
▪ Institutional databases with student-level data 

▪ Institutional surveys & tests 

▪ National surveys & tests (‘standardized’ instruments) 

❖ ‘Standardized’ instruments have 2 important characteristics: 
▪ Reliability: How reliable is the instrument in measuring the constructs 

under consideration? Common measures of reliability are Cronbach’s 
Alpha, Spearman-Brown Prophecy & KR-21 (Kuder-Richardson). 

▪ Validity: How valid are the inferences that can be made by the 
instrument? There are many types of validity & threats to it.



What Does Data REALLY Give Us?

❖ Data gives us the values of variables related to some aspect of the 
subjects. Subjects are NEVER variables. 

❖ Variables in the statistical world are no different than variables you 
remember from Algebra I; they represent a changing set of values, 
but in statistics, there are two major types of variables: 
▪ Qualitative Variables: non-numerical-valued variables 

▪ Quantitative Variables: numerical-valued variables; quantitative variables 
are either discrete (countable) or continuous (measurable) 

❖ Quantitative variables are what we deal with 99% of the time in IR. 
We even make qualitative variables quantitative on a regular basis 
(e.g., IPEDS Race Code)



Levels (Scales) of Measurement for 
Variables

❖ Nominal (Categorical) Data: “name” or “label” data; most 
qualitative data is nominal; some numerical data is (e.g., SSN) 

❖ Ordinal Data: values can be ordered low to high but the numbers(or 
symbols) are only placeholders & differences in the values are 
unable to be determined (e.g., Likert scale) 

❖ Interval Data: differences in values exist but are meaningless; there is 
no “0” & arithmetic operations cannot be performed (e.g., SAT 
scores) 

❖ Ratio Data: differences in values are meaningful; there is a “0”; 
arithmetic operations can be performed (e.g., count data)



Quantitative Research Studies

❖ Descriptive Study: a study which describes what is happening with one 
variable (univariate) at a time  

❖ Observational (Correlational) Study: a study which looks at the 
relationship between two (bivariate) or more (multivariate) variables. 
CORRELATION DOES NOT IMPLY CAUSATION. At the very best, a 
correlational study can only lead to weak causal inferences. 

❖ Experimental Study (Experiment): a study where one or more of the 
(independent & other non-response) variables are manipulated by the 
researcher and subjects are randomly assigned to an experimental 
condition 

❖ Quasiexperimental Study: an experimental study where random 
assignment to experimental condition is not possible



Variables in Research Studies

❖ Research studies involve two types of variables (measured as 
previously discussed): 
▪ Independent (Predictor) Variables (IV’s): variables that you as the 

researcher can control or are already a characteristic of the subject; in 
your research question or hypothesis, the independent variable(s) are 
affecting or driving the action of the dependent variables(s). IV’s are 
usually denoted with an X or an X with a subscript (e.g.,  

▪ Dependent (Response) Variables (DV’s): variables that you suspect are 
being affected by or are related to the influence of the independent 
variable(s). DV’s are usually denoted with a Y. 

❖ IV → DV or X → Y

X1)



Other Variables to Consider in a 
Research Study

❖ Mediating Variables: variables that change the action of IV’s &/or 
DV’s 

❖ Confounding Variables: variables that may mask, when accounted 
for by your model/design, the true relationship between IV’s & DV’s 

❖ Blocking Variables: variables that may explain some of the 
phenomena at hand & which you can measure but whose influence 
you are not directly interested in



Basic Statistics: Part II

Descriptive Statistics 

(or 99% of the number-crunching we do 
in IR)



What Are Descriptive Statistics?

❖ Descriptive statistics describe large amounts of data from variables 
in a single number or a set of numbers. The classes of descriptive 
statistics are: 
▪ Measures of Central Tendency: mean, median, mode 
▪ Measures of Variability: range, variance, standard deviation, 

interquartile range (IQR) 

❖ Descriptive statistics can be calculated for (finite) population & 
sample data. We denote a (finite) population size as N & a sample 
size as n.



Measure of Central Tendency: Mode

❖ Mode: the most frequently occurring score in a distribution, the most 
commonly given single response. It is the only measure of central 
tendency available for categorical data. When there are two or 
more most frequently occurring responses (each having an equal 
number of observations) we say the distribution of that data is 
bimodal. Beyond two, depending on who you ask, the data are 
multimodal or have no mode.



Measure of Central Tendency: Median

❖ Median: the value at which half the scores, when placed in order, 
are above & half are below. The actual values of the scores are 
irrelevant. Because of this, the median is the best way to report 
central tendency for scores with a skewed distribution, like income 
(where there may be outlying values many multiples of the typical 
values of the data). The median is also the best way to report central 
tendency for ordinal data. If you have an odd number of scores, the 
median is simply the number in the middle.  If you have an even 
number of scores, the median is the average of the two numbers in 
the middle.



Measure of Central Tendency: Mean

❖ Mean or Average: the arithmetic average of a set of scores; you 
add them all up and divide by the number of scores. Because you 
can do math with interval or ratio data, the mean is often the best 
way to report central tendency for these types of variables, but 
extreme values (outliers) can make the median still a better choice. 
Means are frequently calculated for ordinal variables in the real 
world, but may in fact not really tell you anything. The mean can be 
unduly influenced by outliers.



Measure of Variability: Range

❖ Range: the high score among your data minus the low score. It gives 
a very rough estimate of the numerical spread of your observations, 
and can be influenced, like the mean, by outliers.   You cannot 
calculate the range or any other measure of variability for 
categorical data, other than the number of different scores or 
responses reported.



Measure of Variability: Interquartile 
Range (IQR)

❖ Interquartile Range: Quartiles are the score values at the ¼ (25%) 
and ¾ (75%) points when the data is put in order, just as the ½ point is 
the median. The ¼ point is also known as the 25th percentile (  
and the ¾ point is the 75th percentile ( ). The interquartile range is 
derived by subtracting the value of the 25th percentile from the 
value of the 75th percentile.  This improves on the raw range by 
limiting the relative influence of extreme outlying scores. You are 
probably familiar in your work with reporting the interquartile range 
of SAT & ACT scores at your institutions.

Q1)
Q3



Measure of Variability: Variance

❖ Variance: the (adjusted, unbiased) average of the deviation scores. A 
deviation is the squared difference between each score in the distribution & 
the mean. (The differences are squared to remove negatives and positives, 
because approximately half the scores will be above the mean, leading to 
a positive difference score, & half below, leading to a negative. If you just 
added up all the difference scores without squaring, you would get zero.) 
Deviation scores become very important in understanding concepts such as 
correlation. The variance is the sum of the deviation scores divided by n – 1 
(rather than n because calculating the mean uses up 1 degree of freedom, 
the number of elements allowed to vary once restrictions have been placed 
on them, such as calculating the mean). The variance has ‘squared’ units & 
is always nonnegative (positive or 0). A variance should only be calculated 
on interval or ratio-scaled data.



Measure of Variability: Standard 
Deviation

❖ Standard Deviation: the square root of the variance; it returns the 
expression of variation to the ‘units’ of the scores you’re trying to describe.  
All of the things that are true about the variance are also true about the 
standard deviation.



Other Ideas Usually Considered in 
Descriptive Statistics

❖ Relative Frequency: the percentage of the distribution of scores that 
have this value; divide each frequency count by the total number of 
observed scores or n. Frequency & relative frequency are often 
depicted graphically as a histogram, a bar graph where the values in 
the distribution are divided into classes of a given size & are 
represented on the horizontal (x) axis & the frequencies or relative 
frequencies are represented on the vertical (y) axis & the bars have a 
height of the frequency or relative frequency for that class. A 
frequency polygon (line graph) can be constructed from a histogram 
by placing a point in the middle of the top of each bar & 
‘connecting the dots’ from the origin (point (0,0)) to the other points 
in order and then to the horizontal axis point of the right end of the 
last bar. The mode will be the highest point on both a histogram & 
frequency polygon.



❖ Cumulative Frequency: accumulating the total frequency or 
percentage of scores in the distribution that have this value or lower. 
This can be done with individual values or classes like in a histogram. 
An ogive is a line graph with either individual values or classes on the 
horizontal axis, cumulative frequencies on the vertical, and a line 
connecting the points representing the cumulative frequency for 
each value or class (located at the end of each class if using 
classes). The last point in an ogive will have a value of either the 
population/sample size if using frequencies or 1 or 100% if using 
relative frequencies/percentages. 

❖ Frequency Table: a table that summarizes the distribution using 
individual values or classes of values, frequencies, relative 
frequencies, cumulative frequencies & used to construct the related 
graphs for each.



❖ Skewness: if the high frequencies (the ‘bump’) in the middle of the range 
of scores on a histogram or frequency polygon is off-center, the data are 
skewed. If the graph tails off to the left, the distribution is left 
(negatively) skewed & mean < median < mode. If the graph tails off 
to the right, the distribution is right (positively) skewed & mode < 
median < mean. If the distribution is not skewed, it is symmetric 
(normally distributed) & mean = median = mode. 

❖ Kurtosis: the ‘heaviness’ or ‘lightness’ of the tails of a distribution. 
Distributions with a relatively large number of scores in the tails, at the 
extreme values of the range of scores, are called heavy-tailed or platykurtic 
(flat, like the bill of a platypus). Some statistical tests are not valid for use with 
platykurtic data. The most extreme example of heavy-tailed data is a 
uniform distribution, with the same number of each score in the distribution. 
Most parametric tests are not valid for uniform data.  



❖ Percentiles: a value represents the kth percentile if k% of the values 
in the distribution are below the value & (100 – k)% of the values are 
above it.  

❖ 5-Number Summary: the lowest value, the 25th percentile, the 
median (50th percentile), 75th percentile & the highest value in a 
distribution. The 5-number summary is graphed as a boxplot or box-
&-whiskers plot. 

❖ Z-Scores (Standard Scores): used to express any kind of data as a 
standardized score in relation to its mean; to calculate a z-score you 
subtract a score from the mean and divide by the standard deviation. If the 
data are normally distributed, 95% of the scores will have z-scores between 
-2 & +2 & 99.7% of the scores between -3 & +3.  Z-scores are useful to 
compare scores on variables with very different scales. 



Example #1: Descriptive Statistics 

❖ Two variables: Average student grades in a class using an e-
textbook; average student grades in a class using a print textbook 

❖ For each variable: 
▪ Construct a histogram 

▪ Find the descriptive statistics (mean, median, mode, range, variance, 
standard deviation) 

▪ Find the 25th & 75th percentiles (1st & 3rd quartiles) & a boxplot 

▪ Find the percentile rank of a given value. 

▪ Convert all of the values to z-scores, find their descriptive statistics & 
draw a histogram. What did you find out?



Summary of Excel Procedures
❖ Histogram: Insert → Recommended Charts → All Charts → Histogram 
❖ Descriptive Statistics: Data → Data Analysis → Descriptive Statistics 

(be sure to check ‘Display Descriptive Statistics’); may also use 
commands 

❖ Quartiles: =QUARTILE.INC(array name, 1 (for 25th) or 3 (for 75th)) 
❖ Percentile: =PERCENTILE.INC(array name, kth percentile) 
❖ Percentile Rank: =PERCENTRANK.INC(array name, value in array) 
❖  z-score: =STANDARDIZE(value, mean, standard deviation) 
❖ Boxplot: Insert → Recommended Charts → All Charts → Box & 

Whisker



Basic Statistics: Part III

Probability & Probability 
Distributions 

(or that stuff you think is rocket science 
but isn’t)



Probability: The Basics

❖ Probability: the chance that an “event” will occur. Probabilities are 
expressed as fractions, decimals or percentages & is usually written 
as P(E), read as “P of E” or the probability that event E occurs. 

❖ Two types of probability:  
▪ Empirical: based on actually conducting a probability experiment; 

number of times the event occurs/number of times the experiment is 
repeated 

▪ Theoretical: based on determining the sample space of a probability 
experiment & how many times a certain “event” occurs; number of times 
the event occurs in the sample space/sample space size



❖ Probability Facts 
▪ The probability of an impossible event is 0 or 0%. The probability of an 

event certain to occur is 1 or 100%. All other probabilities are between 0 
& 1 (or 0% & 100%). There are NO negative probabilities & NO 
probabilities above 1 or 100%. 

▪ The probability that an event will NOT occur is 1 – the probability that the 
event occurs, or 1 – P(E). Not an event is called a complementary event. 

▪ Probability is NOT the same thing as odds. The odds that an event will 
occur (odds in favor) is the ratio of the probability that the event will 
occur and the probability that it will not occur: P(E)/(1 – P(E)) & reduced 
to a ratio written as a:b (read “a to b”). The odds that an event will not 
occur is the reciprocal of the odds in favor: (1 – P(E))/P(E) & will reduce 
to the ratio b:a. Even odds occur when the odds in favor & against an 
event are the same or 1:1. This only happens when P(E) & 1 – P(E) are the 
same (1/2 or 0.5 or 50%).



One Useful Formula That’s Not a 
Probability But Has Percentages

Percent Change/Difference =  · 100% 

❖ If it is negative, it is a decrease. If it is positive, it is an increase. It can 
be over 100%.

New  − Old 
Old



Probability Distributions

❖ Probability Distribution: a distribution of values & probabilities of a 
random variable (the values of the variable occur at random). The 
values in a probability distribution follow the rules for probabilities 
and they add up to 1 or 100%. 

❖ 2 Types of Probability Distributions/Random Variables: 
▪ Discrete: countable values & bar graph depiction, e.g. Binomial, 

Hypergeometric, Uniform, Poisson 

▪ Continuous: measurable values & “smooth curve” graph depiction, e.g. 
Normal, Chi-Square, Gamma



The (Standard) Normal Distribution

❖ By knowing the properties of the normal distribution, we can determine the 
position of any score in relation to other scores in the same distribution. 

❖ The normal curve or bell curve is merely a plot of scores along the horizontal 
axis, and the frequency of each score along the vertical axis (a frequency 
polygon for an infinite number of possible scores). 

❖ We use a normal distribution described in terms of z-scores. We have seen 
that the distribution of z-scores has a mean of 0 & a standard deviation of 1, 
& the same is true for the normal distribution. The frequency of the scores 
clusters about 0. The distribution is symmetric about the vertical axis (about 
0). Below 0, the z-scores are negative & positive above 0. The total area 
under the curve is 1 or 100% & each half of the curve had 0,5 or 50% of the 
area. In a continuous distribution, probability = area under the curve, so we 
cannot find the probability of exactly a given value.





Finding Probabilities with the Normal 
Distribution

❖ If you know a z-score, you can find the cumulative probability (the 
probability of less than that number) in Excel by using 
=NORM.S.DIST(z-score,1). 

❖ If you know a certain cumulative probability & wish to find the z-
score, use =NORM.S.INV(probability) 

BUT… 
What we really want to do is find probabilities or percentages or 
proportions or percentile ranks for practical situations where we do not 
have to calculate z-scores! 



Example #2: Normal Probabilities

The Wechler-Belview G intelligence test has scores that are normally 
distributed with a mean of 100 and a standard deviation of 15.  
a. Find the percentile rank of a person who scores 120. 
b. Find the proportion of people who score above 70. 
c. Find the proportion of people who score between 75 & 130. 
d. A special program is to be given to students who score in the lowest 

20% on the test. What is the cutoff score for the program? 
e. A special program is to be given to students who score in the top 

5% on the test. What is the cutoff score for the program?



Summary of Excel Procedures

❖ Percentile Rank, Probability Below a #: =NORM.DIST(#, mean, 
standard deviation, 1) 

❖ Probability Above a #: =1 – NORM.DIST(#, mean, standard deviation, 
1) 

❖ Probability Between Lower # & Higher #: =NORM.DIST(higher #, 
mean, standard deviation, 1) – NORM.DIST(lower #, mean, standard 
deviation, 1) 

❖ Cutoff Score for the Lowest %: =NORM.INV(percentage as a decimal, 
mean, standard deviation) 

❖ Cutoff Score for the Highest %: =NORM.INV(1 – percentage as a 
decimal, mean, standard deviation)



One Last Topic In Probability: The 
Sampling Distribution of Sample Means

❖ Sampling Distribution of Sample Means: a distribution of sample 
means of size n taken from a population with a given mean (µ: mu) 
& standard deviation (σ: sigma); the mean of the distribution of 
sample means is the population mean, µ, & the standard deviation 
of the sample means (known as the standard error of the mean) is 

. 

❖ The Central Limit Theorem: as n increases, the sampling distribution of 
the sample means approaches the normal distribution; the Central 
Limit Theorem ‘kicks in’ when n ≥ 30, so you can assume at the very 
least approximate normality 

𝜎

𝑛



❖ How This Connects to Probability: you can find the probability that a 
sample mean is below, above or between different numbers, as well 
as percentile rank, for a given value using the sample mean as the 
value under consideration & standard error of the mean, rather than 
the standard deviation, in a z-score



Basic Statistics: Part IV

Inferential Statistics  

(or what is often used & abused)



Inferential Statistics: The Big Picture

Descriptive Statistics for 1 or more samples 
+ 

Probability Distributions  
↓ 

Inferential Statistics 

Inferential statistics: used to compare the results of your descriptive 
statistics against a probability distribution that you have reason to 
believe is appropriate for the data and research question at hand to 
see if your snapshot or part of your snapshot is an unusual result. 



Confidence Intervals

❖ Idea: We cannot calculate a population mean. The sample mean is an 
(best linear) unbiased estimator of the population mean, but it does 
have a measurement error (standard error of the mean). If we estimate 
an unknown number, we will come up with values above & below the 
number. We construct a confidence interval for a population mean 
using a sample mean, the standard error of the mean & a value from 
the normal distribution that corresponds to a certain percentage of the 
time (usually 95%) that we wish for the interval to capture the true value 
of the population mean. The interval structure is (Sample Mean – Error, 
Sample Mean + Error) or (  + E). Confidence intervals can be 
calculated for many parameters. Excel does not calculate confidence 
intervals.

x̄  − 𝐸,  x̄



Hypothesis Testing: Could This Have 
Really Happened by Chance?

❖ Step 1:  Formulate all hypotheses you’re interested in. 

▪ Null Hypothesis: Ho: The observations are the result purely of chance, the 
hypothesis of no difference or no change. The null hypothesis always has 
equality as a part of it, e.g., µ = 50,  =  

▪ Alternative Hypothesis: Ha: There is a real effect. The observations are the 
result of this real effect plus error, or chance variation. The alternative 
hypothesis determines the ‘tail’ of the test (related to the tail of the 
probability distribution used): 2-Tail (not equal, e.g.,  ≠   ), Right Tail 
(greater than, e.g.,  >  ), Left Tail (less than, e.g.,   <  )

μ1 μ2

μ1 μ2
μ1 μ2 μ1 μ2



❖ In the end, there are 2 decisions you can make about your 
hypotheses: 

▪ Reject : there is statistically significant evidence to support that the 
null hypothesis is false  

▪ Fail to Reject : there is statistically significant evidence to support that 
the null hypothesis is not false (i.e., true) 

❖ The good researcher never says absolutely true or false. We support 
a claim or do not support a claim (a claim is our hypothesis, not the 
statistical one). 

❖ There are 2 errors that can be made in statistical decision making: 
▪ Type I error: The null hypothesis is rejected when it is in reality true. 

▪ Type II error: The null hypothesis is not rejected when it is in reality false.

𝐇𝟎

𝐇𝟎



❖ Significance (Alpha: α) Level: the probability of making a Type I error. 
The alpha level is usually preset to 0.05 in most educational settings. 
The lower the level of significance (type I error), the higher the 
probability that a type II error will be committed.  In other words, the 
harder you make it to reject the null hypothesis, the easier it is to fail 
to reject the null hypothesis when it is in fact false (Type II error.   

❖ Beta (β): the probability of making a Type II error 
❖ Power: 1 – β. The (statistical) power of a test is the ability to detect a 

correct result—to reject the null hypothesis when it’s false or not 
reject it when it’s true. That ability can be affected by several 
aspects of the test—the sample size (power increases with sample 
size), the specified level of significance (the lower alpha, the higher 
beta so less power), and making your design more specific to what 
you want to know (like switching from a two-sided hypothesis to one 
if you have a good idea that the result will fall in one direction).



❖ Step 2:  Identify a test statistic that will assess the evidence against the null 
hypothesis. This is usually a z, t,  (Chi-Square), F test statistic. 

❖ Step 3:  Find the p-value for your data. This answers the question, "If the null 
hypothesis were true—if there were actually nothing going on with my data--
then what is the probability of observing a test statistic at least as extreme as 
the one I observed? 

❖ Step 4: Compare the p-value to a fixed significance level, called alpha (α). 
In most research/statistics classes, alpha will always be 0.05. If the p-value is 
.05 or less, reject the null hypothesis. Otherwise, fail to reject the null 
hypothesis.  When we rule out the null hypothesis, we are agreeing that 
something else is going on. That something else is the alternative hypothesis. 
In modern statistical practice, we usually include a 95% confidence interval 
for the parameter(s) under study to strengthen our case.

X2



Now That You Have Found Statistically 
Significant Results…

The larger the sample, the more power you have to reject the null 
hypothesis. Therefore, with very small sample sizes, very small, "real 
world" insignificant differences between groups will be statistically 
significant. To combat this problem, effect size statistics can be 
calculated. The effect size is merely the difference between groups: ES 

=  − . The standardized effect size, d, is d = .  

Cohen’s Convention: d = 0.3, weak effect size; d = 0.5, moderate effect 
size; d = 0.8, strong effect size.

𝑥̄1 𝑥̄2
x̄1 − x̄2

Standard Error



There is no ‘magic’ level of (standardized) effect size to guide real-world policy 
decisions.  In some high-risk situations, a weak effect size may be evidence 
enough to make a change; in some low-risk, moderate-reward situations, it 
may be necessary to look for a higher effect size to justify a change. 

There are many other types of effect sizes for the many other types of 
hypothesis tests where you compare two (or more) groups.



Example #3: Comparing 2 Independent 
Population Means

❖ Situation: Students in one class used an e-textbook & completed 
online homework. Students in another class used a print textbook & 
completed homework ‘by hand’. Students in both classes were 
taught by the same instructor & completed the same quizzes & tests. 

❖ Hypothesis: Students in the e-textbook class scored higher, on 
average, than the students in the print textbook class. 

❖ Statistical Hypotheses 
:  =  (e-book class mean = print class mean)

:  >  (e-book class mean > print class mean) 

 

𝐇𝟎 μ1 μ2

𝐇𝐚 μ1 μ2



Conducting the Hypothesis Test

❖ Check the assumptions for using one of the appropriate tests. 
▪ Random selection/assignment?  

▪ Normality? Look at the boxplots. 

❖ Test/Test Statistic to Use: For this research design, we typically use the 
t-Test for 2 independent samples, based on the Student’s t-
Distribution (a symmetric distribution that approaches the standard 
normal as its degrees of freedom increases). For us to use this test, 
however, we must first determine if the variances of the two groups 
are equal. This involves using an F-Test (a test using a ratio based on 
the F-Distribution, a positively skewed distribution with degrees of 
freedom for both numerator & denominator of the ratio)



F-Test for 2 Independent Population 
Variances

❖ Statistical Hypotheses (2-Tail Test) 
: The variances of the two groups are equal.
: The variances of the two groups are not equal.

❖ F-Test Statistic: F =   

❖ Test Conclusions 
▪ Reject : Conclude that the variances are not equal. Use t-Test: 2-

Sample Assuming Unequal Variances (uses Satterthwiate approximation) 

▪ Fail to Reject : Conclude that the variances are equal. Use t-Test: 2-
Sample Assuming Equal Variances

𝐇𝟎

𝐇𝐚

sample standard deviation of first group
sample standard deviation of second group

𝐇𝟎

𝐇𝟎



Basic Statistics: Part V

Correlation & Regression 

(remember…correlation is NOT 
causation)



Correlational Research

❖ The correlation coefficient is a standardized measure of the slope of 
the line that expresses the linear relationship between two variables 
(x, independent variable & y, dependent variable) on a -1 to 1 
scale. Pearson correlation coefficients do this for two continuously 
measured variables, but there are other types as well. The 
correlation is standardized by a ratio of the two variables’ standard 
deviations so that the unit of measurement of the two variables does 
not affect the value of the correlation coefficient. 

❖ Correlational research is used to determine (a) if there is a 
relationship between two or more variables, and if so (b) to 
determine the strength & direction of the relationship. 



❖ The relationship between variables should generally only be 
investigated if there is a reason/theory supporting the possibility of a 
relationship; don’t go shopping for correlations. 

❖ Correlation, like regression and other techniques built on correlation, 
are techniques of mathematical maximization. This means that they 
can possibly show significant relationships that only exist in the 
sample of observations used to calculate the correlation or build the 
model; these relationships can fall apart or change when a new set 
of data is collected.  For this reason, theory should drive your use of 
correlational and other mathematical maximization techniques. 

❖ Sometimes correlations are significant, but make little obvious sense. 
If your sample size is even modestly large (like 30), you can get 
statistically significant correlations that may not be practically 
significant. 

❖ There are significance tests for r & other correlation coefficients.



❖ If reliability and validity of your instrument are low, error is added, 
thus reducing correlation. However, good reliability and validity 
does not assure a strong correlation. Also, it helps if your variables 
are measured as accurately as possible.  

❖ If the range of your variables is limited or your sample is very 
homogenous, this can also artificially reduce correlation 
coefficients. Also, if you are using a variable that is mathematically 
derived from another variable (such as a passing grade/failing 
grade group), you are artificially limiting the variation in your data 
and it would be better to just use the raw grade in your correlation. 

❖ For two interval or ratio variables, the Pearson correlation 
coefficient is calculated.  If at least one variable is only ordinal or 
the data is not normally distributed, ranks replace the scores and a 
Spearman correlation is appropriate. Other types of correlation 
coefficients are the phi (Φ) coefficient, the point-biserial correlation 
and the tetrachoric correlation.



Interpreting the (Pearson) Correlation 
Coefficient, r 

❖ Positive values of r indicate a positive linear relationship between x & 
y, i.e., as x increases, y increases or as x decreases, y decreases. 

❖ Negative values of r indicate a negative linear relationship between 
x & y, i.e., as x increases, y decreases or as x decreases, y increases. 

❖ r = 0 means that there is no linear relationship between x & y. 
❖ Strong Correlation: Less than or equal to -0.7 or greater than or equal 

to 0.7. 
❖ Moderate Correlation: Between -0.7 & -0.3, exclusive, or between 0.3 

& 0.7, exclusive, & can be moderately strong or weak. 
❖ Weak Correlation: Between -0.3 & 0.3, inclusive.



Multiple Correlation Coefficient, R, & 
Coefficient of Determination, 𝐑𝟐

❖ Multiple Correlation Coefficient (R): Pearson product-moment 
correlation coefficient for multiple independent variables & one 
dependent variable. Interpretation of R is the same as for r. An 
adjusted version is often used to account for the fact that adding 
independent variables increases R. 

❖ Coefficient of Determination, : the amount of variation in the 
dependent variable that can be explained by the predictor 
(independent) variable(s). An adjusted version is often used to 
account for the fact that  automatically increases when more 
predictor variables are added. The adjusted version accounts for 
this. We look for high values of  (they range between 0 & 1) in 
correlational studies.

𝐑𝟐

R2

R2



Regression

❖ Procedures built on the correlation coefficient include simple linear 
regression (X predicting Y), multiple regression (more than one X 
simultaneously predicting one Y), or multivariate regression (one or 
more X predicting a set of Y). When Y is dichotomous (only has two 
values, like yes/no, or membership in a group such as degree 
completers), logistic regression predicts the likelihood of having one 
or the other value. When Y has a pattern that is nonlinear, there are 
regression models that are connected to associated functional 
relationships, such as polynomials, exponential, logarithmic and 
power functions.



❖ Regression works from a mathematical principle known as least 
squares. Least squares allows you to find the most appropriate line to 
describe the relationship between Y, the criterion variable, and X (or 
X1, X2 . .), the predictors, by minimizing the total distance between 
the actual plotted observations in your data and the line used to 
predict where they might be. These individual differences between 
where the points in your data are and where the line predicts they 
should be are called residuals. You want to minimize the residual 
effect in a regression model while still explaining a significant amount 
of the variation in the data. 

❖ Regression models are used to predict the value of the dependent 
variable(s) from the values of the independent variable(s). 
Predictions outside the range of values of the independent 
variable(s) that you know are done with great care, necessitating 
the construction of prediction intervals (similar to confidence 
intervals) for values of the dependent variable predicted by the 
regression line.



Simple Linear Regression Model

 = a + bX
where: 

❖  = the predicted value of the dependent variable, Y
❖ a = the y-intercept of the line, (0, a) 

❖ b = the slope of the line (negative, positive or 0); the slope of the 
line corresponds to the sign of the correlation coefficient, r 

❖ X = the value of the independent variable 

This is an estimate of a probabilistic general linear model. 

Ŷ

Ŷ



❖ Multiple Regression models add more x’s (& sometimes 
combinations thereof, such as interactions) to the equation. 

❖ When you have a set of variables that highly correlate with each 
other and you pick and choose among them without a clear 
preexisting theory as to what should have a relationship to what, you 
can set out to create instability in your model by not controlling for a 
phenomenon known as multicollinearity—basically that there are 
multiple linear relationships that all predict your data equally well 
and you have no way to know the best one.  In a perfect world you 
would have a criterion variable (what you’re trying to predict) that is 
highly correlated to each predictor but those predictors are not 
highly correlated with each other, and a model that is driven by 
theory. But in real life, as in human relationships, many of the 
variables we use are already related to each other.  Always be 
guided by a strong theory of what it is you are trying to formulate.



The ANOVA (Analysis of Variance) 
Table

Source SS  
(Sum of 

Squares, the 
numerator of 
the variance)

df  
(degrees of 

freedom, the 
denominator 

of the 
variance)

MS  
(Mean 

Square, the 
variance)

F

Regression 
(or Between 
or Model)

SSR k – 1 MSR = F = 

Residual  
(or Error or  

Within)

SSE n – k MSE =  

Total TSS n – 1   



❖ The F statistic (& its associated p-value) allow us to determine if the 
regression model is valid; this is an omnibus F-test. If the p-value ≤ 
your chosen significance level, there is statistically significant 
evidence that the model is valid. If not, there is statistically significant 
evidence that it is not. 

❖ There are also significance tests for the slope (in simple linear 
regression) & the predictor coefficients (in multiple regression). 

❖ The independent & dependent variables in a regression model are 
assumed to have been randomly selected or assigned from a 
normal population. 

❖ The errors (residuals) in a regression model are assumed to be 
identically & independently distributed from a normal distribution 
with a mean of 0 & a constant (error) variance. 

❖ Verifying the assumptions of the model is called regression 
diagnostics.



Example #4: Building Linear Regression 
Models

❖ Situation: The data are the SAT Verbal scores, SAT Math scores & the 
GPA of 10 students who have just completed their first year of 
college. 

❖ We want to: 
▪ Conduct a full correlation analysis for the data. 

▪ Construct linear models to predict GPA using SAT Verbal &/or Math 
scores. 

▪ Determine if the models are significant.



Summary of Excel Procedures

❖ Scatterplot with Line & Regression Model: Insert → Scatter (or use 
Add Recommended Charts → Right click on a data point → Add 
Trendline → Linear → Check Display Equation on Chart 

❖ Correlation Matrix: Data → Data Analysis → Correlation 
❖ Regression Model with ANOVA Table & Related Output: Data → Data 

Analysis → Regression (for diagnostic outputs, check the boxes under 
Residual & Normal Probability)


